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ABSTRACT
The increased use of video conferencing applications (VCAs)
hasmade it critical tounderstandandsupport end-userquality
of experience (QoE) by all stakeholders in the VCA ecosys-
tem, especially network operators, who typically do not have
direct access to client software. Existing VCAQoE estimation
methods use passive measurements of application-level Real-
time Transport Protocol (RTP) headers. However, a network
operator does not always have access to RTP headers, partic-
ularly when VCAs use custom RTP protocols (e.g., Zoom) or
due to system constraints (e.g., legacymeasurement systems).
Given this challenge, this paper considers can we use more
standard features in the network traffic, namely the IP and
UDP headers, to provide per-second estimates of key VCA
QoE metrics such as frames rate and video resolution. We
develop amethod that uses machine learningwith a combina-
tion of flow statistics (e.g., throughput) and features derived
based on themechanisms used by theVCAs to fragment video
frames into packets. We evaluate our method for three preva-
lent VCAs running over WebRTC: Google Meet, Microsoft
Teams, and CiscoWebex. Our evaluation consists of 54,696
seconds of VCA data collected from both (1), controlled in-lab
network conditions, and (2) 15 real-world access networks.
We show that our approach yields similar accuracy compared
to the RTP-based baselines, despite using only IP/UDP data.
For instance,we can estimate frame ratewithin 2 FPS for up to
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83.05% of one-second intervals in the real-world data, which
is only 1.76% lower than using the RTP headers.
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1 INTRODUCTION
As users continue to depend on video conferencing appli-
cations (VCAs) for remote participation in work, education,
healthcare, and recreation, ensuring a high quality of expe-
rience (QoE) when using VCAs is critical. Although QoE de-
pends to some degree on the specific circumstances of end
users, network operators can often play important role inmit-
igating QoE degradation resulting from poor local network
conditions.Anetwork operatorwho canobserve aVCA’sQoE
metricsmay be able to diagnose and react to QoE degradation,
potentially preventing even transient congestion events from
affecting user experience. Unfortunately, network operators
lack direct access to applicationQoE, andmust inferQoE from
the encrypted application traffic as it traverses the network.
Methods exist to infer QoE from video-on-demand applica-
tions, but these methods do not apply to inferring QoE for
VCAs, which turns out to be a different problem. An impor-
tant distinction et delay or loss by relying on a large playout
buffer (i.e., of at least a few seconds); on the other hand, VCAs
must keep a short jitter buffer (specifically, less than 100 ms)
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and thus are susceptible to a wide range of incidents that can
disrupt or degrade network quality.
In this paper, we explore how to enable network operators

to infer objective VCA QoEmetrics at a per-second time gran-
ularity from passive measurements of network traffic. QoE is
inherently subjective [22], making it challenging to infer on a
large scale, even for service providers, let alone network op-
erators who have no data from instrumentation of the client
which can be useful for directly inferring user experience.
To address this challenge, objective application metrics are
commonly employed as a substitute for subjective QoE. The
precise relationship between these application-level metrics
and user QoE can be determined through user studies or data-
driven methods [5] – this is complementary to the estimation
of objective application metrics and is out of scope of this pa-
per. Furthermore, although VCA performance is determined
by both audio and video, past work has extensively examined
audio QoE as a function of network quality of service met-
rics [4, 12]. Our primary focus, therefore, is to infer objective
metrics (described in Section 2) that impactVCAvideo quality.
Recent work has proposed data-driven techniques, often

leveraging machine learning, to estimate VCAQoEmetrics
fromnetwork-layermetrics [9, 35, 45].However,most of these
studies assume the ability to parse application-level headers,
which is not always the case. Some VCAs, like Zoom, use
proprietary application protocols, posing challenges for ex-
tracting information using standard network monitors [32].
In recent work, Michel et al. [34] develop a method to detect
Zoom application traffic and extract encapsulated applica-
tion headers. Yet, the proposed approach will not work if
Zoom changes its protocol format (e.g., if it starts using a
more complex encapsulationmechanism in the future). More-
over, application headers are encrypted in certain scenarios,
such as when traffic is routed over a virtual private network
(VPN), and it is likely that all application headers will even-
tually be encrypted even for regular traffic [42]. Thus, this
paper proposes methods to estimate video QoE using more stan-
dard features of the network traffic, specifically only IP/UDP
headers. A notable advantage of using IP/UDP headers is that
existing networkmonitoring systems can readily extract such
information at scale [41].

The QoE inference method we develop uses the semantics
of video delivery in VCA network protocols: due to VCAs’
real-time nature, each video frame is encoded and transmitted
immediately. These transmission characteristics give rise to
packet sizes and inter-arrival times that contain important
signal about variousQoEmetrics, such as frame rate. By lever-
aging these insights, we develop both a heuristic and a ma-
chine learning-based model that estimate VCAQoEmetrics
at a fine time granularity. We evaluate our approach on three
popularVCAs (Meet, Teams, andWebex) that useWebRTC, an
open-source framework providing real-time communication

capabilities to browsers and smartphones 1. To evaluate our
approach, we collect data from in-lab under diverse emulated
network conditions as well as from 15 households spanning
different ISPs and speed tiers over a period of two weeks. Our
evaluation demonstrates that the proposed method achieves
high accuracy in estimating video QoEmetrics for VCAs.

Wemake the following contributions:
• We develop a machine learning-based method that uses
features informed by mechanisms used by VCAs to frag-
ment a frame into packets and infer VCA QoE metrics at
finer time granularity using only the IP/UDP headers
• We develop an automated browser-based, VCA data col-
lection framework and use it to evaluate our approach by
collecting data under controlled in-lab network conditions
as well as data from 15 households spanning a variety of
ISP and speed tiers over a period of two weeks. Both the
code and data from the paper has been made public [40].
• We demonstrate that using only IP/UDP headers can yield

frame rate estimates within 1.50 frames of the ground truth
QoEonanaverage.Toput it inperspective,wealsocompare
accuracy using RTP headers which is 1.33 of the ground
truth QoE on average, a difference of only 0.17 frames.
• We show a prediction model trained on data from con-
trolled lab settings transfer to real-world networks. Our
results show that themodel transferswithmarginal drop in
accuracy for two out of three VCAs. Furthermore, we char-
acterize the network conditions under which the model
have high errors and the potential reasons leading to errors.

2 PROBLEMCONTEXT
We provide background on video conferencing applications,
the QoEmetrics, and detail the QoE inference problem.

2.1 Video Conferencing Applications
VCAs typically use Real-Time Transport Protocol (RTP) [38]
for sending audio and video data and Real-Time Transport
Control Protocol (RTCP) [23] for control traffic. Although
VCAs can independently implement each of these protocols
in the application, theWebRTC open-source real-time com-
munication framework has become extremely prevalent, as
it is supported by most modern browsers and devices (e.g.,
Android). We focus onWebRTC-based VCAs.
QoEmetrics.Wefocus on inferringobjectivemetrics pertain-
ing to the video quality of conferencing. More specifically, we
focus on the following four metrics: (1) Video bitrate, defined
as the total number of bits received per second, with a lower
bitrate indicating lower video quality.; (2) Frame rate, defined

1We focus on WebRTC-based VCAs as it provides mechanisms to collect
ground truth QoE metrics, which are essential to evaluate the method we
have developed. Our approach, however, applies to all VCAs that use Real-
time Transport Protocol (RTP)
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as the number of video frames received by the application per
second. A low frame rate leads to reduced smoothness and
realism of viewing experience ; (3) Frame jitter calculated as
the standard deviation of the time gaps between consecutive
frames or inter-frame delay. A high frame jitter also affects
smoothness of video playback, resulting in a jerky playback.
and (4) Resolution, the number of pixels in a video frame, with
lower resolution indicating lesser details in the video.
Additional metrics can affect a VCA’s QoE, including end-

to-end network latency, as well as the resulting quality of the
audio [17]. End-to-end network latency can be challenging
to measure from a single vantage point for UDP-based traffic;
previous work already estimates audio QoE for VoIP [12].

2.2 Inference Problem
Problem Statement.We take as input a sequence of packets
collected from access nodes (e.g., border router), and out-
put the desired QoEmetrics at a𝑊 -second granularity. The
choice of𝑊 ultimately depends on the network operator’s
ability to react to the inferred QoE degradation by, for exam-
ple, reconfiguring the network to mitigate the inferred QoE
degradation incidents. We also assume that the input consists
only of RTP packets from the VCA and contains no other
traffic. We can safely make this assumption because previous
work has developed traffic classification methods to identify
packets associated with a specific VCA session [36].
Measurement Context.We consider the case when opera-
tors use only IP and UDP headers. This scenario is motivated
by several observations: First, for some VCAs that use non-
standard versions of RTP (e.g., the native Zoom client [32]),
network operators do not have access to RTP headers as these
VCAs. Second, as has transpired with many other applica-
tions and protocols (e.g., DNS [7], TLS [10]), we expect VCAs
to encrypt the RTP headers in the future. Finally, extract-
ing IP and UDP headers is muchmore efficient and scalable
than extracting RTP headers; in fact, many existing network
monitoring systems [41] already support extracting IP/UDP
headers along with packet sizes and times.

3 METHOD
In this section, we describe our QoE estimation method that
uses only IP/UDP headers. We assume access to traffic from a
single VCA session and it consists of two steps. The first step
involves isolating the video traffic from the audio component.
Given the distinct transmission techniques (e.g., encoding,
error control) used for audio and video, it becomes important
to differentiate audio and video packets. Once the video traf-
fic is identified, the second step involves using information
from this traffic to infer the video QoE metrics. We first de-
scribe these two steps for our method. This is followed by a
description of RTP baselines used for comparison.
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Figure 1: Packet sizes vs payload type for Teams.

3.1 Media Classification
Past work to distinguish media type relies on RTP head-
ers [32, 36]. More specifically, a seven-bit RTP header called
payload type can be used to identify the payload format. For
example, in case of Teams, we observe three different payload
types (PT): (1). PT = 111 for audio encoded using OPUS, (2)
PT=102 for video encoded using H.264, and (3) PT = 103 for
video retransmissions. However, with no access to RTP head-
ers, it becomes challenging to identify the media type of an
RTP packet.
To overcome this challenge, we use the insight that voice

samples can be encoded in fewer bits than images. As a result,
the audio packets are typically smaller than video packets.
Figure 1 illustrates this phenomenon, showing the CDF of
packet sizes corresponding to audio, video, and video retrans-
missions from 16528 seconds of Teams calls (see Section 4
for details). The actual packet media type is identified using
the RTP Payload Type header. The audio packet sizes range
between [89, 385] bytes; the video packets are significantly
larger,with 99%ofpackets being larger than564bytes.Among
video retransmissions, which constitute 8% of video packets,
we find a significant proportion (92%) of packetswith a packet
length of 304. These are likely keep-alive messages for the
retransmission transport stream as retransmissions are typ-
ically only sent in the case of packet losses. Because these
packets do not contain any video payload, it makes sense to
filter them out from the QoE inference step. The remaining
video retransmission packets are significantly larger.

This characteristic allows us to use a size threshold denoted
as𝑉𝑚𝑖𝑛 to identify video packets. Any packetwith size greater
than or equal to𝑉𝑚𝑖𝑛 is tagged as a video packet, while the
remaining packets are not considered. The value of𝑉𝑚𝑖𝑛 can
be determined by inspecting a few VCA traces collected in
the lab.

3.2 QoE inference
We develop two approaches to infer QoE metrics from video
trafficusing only IP/UDPheaders. Thefirst approach, referred
to as IP/UDP Heuristic, utilizes VCA video delivery seman-
tics. We find that relying solely on the heuristic approach can
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Figure 2: Intra- and inter-frame packet size difference for
Teams

lead to errors, particularly under high network jitter and loss.
We thus propose a machine learning(ML)-based approach
called IP/UDPML that relies on a combination of network fea-
tures, including both statistics on network traffic and features
derived using insights from the IP/UDP Heuristic.

3.2.1 Heuristic. Because VCAs are real-time and low la-
tency application, each video frame generated at the sender is
transmitted over the network as soon as it has been encoded.
From the network perspective, each frame comprises one or
moreRTPpackets. TheVCAclient transmits these packets im-
mediately, without waiting for additional frames. As a result,
a VCA session can be abstracted as a sequence of video frames,
with each frame transmitted sequentially over a group of RTP
packets separate fromother frames. Identifying the video frame
boundaries (by identifying frame end time) and frame size
can enable inference of key QoE metrics described in Sec-
tion 2. Past work has relied on using RTP headers to identify
frame boundaries [32]. Without access to the RTP headers, it
is challenging to identify the frame boundaries.
Key Insights: To identify frame boundaries using IP/UDP
headers, we use insights from the mechanisms that VCAs use
to divide frames into packets.We first consider whether there
are patterns in packet inter-arrival times (IAT). A frame is
packetized and transmitted immediately, which leads to mi-
crobursts on the network, causing the inter-departure times
to be shorter for packets within the frame as compared to
packets across frames. Unfortunately, this insight is challeng-
ing to apply reliably to determine frame boundaries as packet
timings can change when packets traverse along the network.
Thus, thepatterns in the inter-departure timesmaynot appear
in the inter-arrival time (IAT) at the receiver.
We next consider whether there are unique patterns in

packet sizes. An advantage of using packet size is that it does
not change during packet transmission over the network. In-
terestingly, we find a unique pattern in the packet sizes, i.e.,
packet sizes tend to resemble those within the same frame
and differ from packet sizes in consecutive frames. This phe-
nomenon occurs because VCAs typically fragment a frame
into equal-sized packets. This is done because the Forward
Error Correction (FEC) mechanisms used to protect against

network losses are most bandwidth-efficient when packets
in a frame have equal length [25, 27]. Furthermore, due to
dynamic nature of the underlying video content along with
variable bitrate encoding used by VCAs, consecutive frames
exhibit different sizes and, consequently different packet sizes.
Figure 2 illustrates this characteristic, showing the CDF

of size difference in consecutive intra-frame and inter-frame
packets, for more than 360,000 frames. The true frame bound-
aries are identified based on the RTP timestamp header as ex-
plained in Section 3.3. For frameswithmore than two packets,
we show only the maximum size difference across all packets.
The inter-frame size difference is the absolute size difference
between the first and the last packets of two consecutive
frames. We find that the intra-frame packet size difference
is less than two bytes for all but one packet. The inter-frame
packet size difference on the other hand is at least 2 bytes for
more than 99.4% of the frames.
Frame boundary estimation: Thus, we use a packet size
difference threshold Δ𝑚𝑎𝑥

𝑠𝑖𝑧𝑒 and declare frame boundary if the
size difference between consecutive packets is greater than
Δ𝑚𝑎𝑥
𝑠𝑖𝑧𝑒 . However, it is not sufficient to compare only consec-

utive packets as packets can arrive out of order. Therefore,
instead of comparing with only the last packet, we iteratively
compare with up to 𝑁𝑚𝑎𝑥 packets that arrived before this
packet, beginning with the most recent packet. If the size
difference of the current packet is within Δ𝑚𝑎𝑥

𝑠𝑖𝑧𝑒 for any of
these packets, it is considered as part of the same frame as the
matching packet. Otherwise, the packet is assigned as a part
of new frame. The exact heuristic is described in Algorithm 1
in the Appendix.
The parameters of the heuristic, i.e., 𝑁𝑚𝑎𝑥 and Δ𝑚𝑎𝑥

𝑠𝑖𝑧𝑒 , can
be determined by inspecting few traces for a given VCA in
the lab. Intuitively, a large value of 𝑁𝑚𝑎𝑥 can account for all
out-of-order packet arrivals. However, it also increases the
probability of incorrectly combining a packet from a new
frame to an earlier frame with a similar size. Thus, the value
of 𝑁𝑚𝑎𝑥 should be set carefully. We analyze the sensitivity of
the heuristic to different values of 𝑁𝑚𝑎𝑥 in our evaluation.
QoE estimation from frames: Once the frame boundaries
have been identified, for a single session S, we obtain a se-
quence of frames along with their sizes. We use this infor-
mation to estimate the key QoE metrics over a window𝑊 of
duration𝑤 seconds in the following manner:
• Video bitrate: It is simply the time average of the total bits

across all frames transmitted in the windowW.
• Frame rate: It is simply the number of frames transferred

per second in the windowW. More specifically, Frame rate
=

∑𝑁
𝑖=1 𝐼 (𝐸𝑇𝑖 ∈W)

𝑤
. Here, indicator function 𝐼 equals one if the

frame end time is within the window, and zero otherwise.



WebRTC Video QoE Estimation IMC ’23, October 24–26, 2023, Montreal, QC, Canada

• Frame jitter: It is calculated as the standard deviation of
difference in end times (𝐸𝑇𝑖 - 𝐸𝑇𝑖−1) of consecutive frames
received over the windowW.
We do not estimate frame resolution using this method as

there is no direct signal in the frame reflecting its resolution.
Intuitively, one can design a machine learning-based method
that uses frame sizes and FPS from the heuristic to predict
video resolution. This, however, is similar in principle to the
machine learning-based method described in Section 3.2.2;
hence, we skip implementing the approach for simplicity.

3.2.2 Machine Learning Approach. Why use machine
learning?: The heuristic described in Section 3.2.1 relies on
assumptions that can break under certain conditions. For
instance, under high latency jitter or packet loss, packets can
arrive out of order leading to incorrect estimation of frame
boundaries. Although we add parameters (e.g., use a packet
lookback𝑁𝑚𝑎𝑥 > 1) that alleviate the errors to some extent, it
still does not completely solve the problem.More importantly,
there are other, complimentary, signals in the network data
that can inform QoE estimation. For instance, given the real-
time nature of the VCAs, throughput is a potential indicator
of few QoEmetrics such as video bitrate. Including multiple
such signals into a heuristic can quickly make it complicated.
Therefore, we consider a data-driven approach that considers
multiple features derived from the network data along with
supervised machine learning models. We now describe our
approach.
Input features: We use a common set of features to predict
all QoE metrics. The features considered can be divided into
two categories:
• VCA semantics-based: These include two features that

are informed by how VCAs fragment frame into packets as
described in Section 3.2.1. The first feature is the number of
unique packet sizes observed in the prediction window𝑊 .
The second feature is the number of microbursts of packets
in the prediction window𝑊 . A microburst is defined as
a sequence of packets with the consecutive inter-arrival
times within a threshold \𝐼𝐴𝑇 . Therefore, the microburst
count is simply the number of consecutive packets with
inter-arrival time ≥ \𝐼𝐴𝑇 . Intuitively, these features can
help inform the frame boundaries and consequently the
key video QoEmetrics.
• Flow-level statistics: We also derive a set of key statistics
from the IP/UDP headers of video packets. These include
number of bytes and packets per second as well as five sta-
tistics on packet sizes and inter-arrival times namely mean,
standard deviation, median, minimum andmaximum. In-
tuitively, given the real-time nature of VCAs, any transient
degradation in the VCAQoEmetrics would also be evident
in one or more of these statistics.

In total,we compute 14 features for eachpredictionwindow
𝑊 as summarized in Table 1.

3.3 RTP Baselines
To benchmark the accuracy of our approach using IP/UDP
headers, we also consider two RTP-based approaches as base-
lines. The first approach is a heuristic approach, called RTP
Heuristic, and the other is amachine learning-based approach
called RTPML.We now describe both of these approaches.
RTPHeuristic: This is similar to the approachusedbyMiche;
et al. to estimate QoEmetrics for Zoom [34] and is based on
the same insight as the IP/UDPHeuristic approach, i.e., a VCA
session can be modeled as a sequence of frames. To identify
frame boundaries, it uses the RTP timestamp field from the
packet headers. The RTP timestamp is used to determine the
correct order for media playback, as well as to synchronize
audio and video streams. Packets belonging to the same frame
receive the same RTP Timestamp, and thus the field can be
used to identify frame boundaries. To detect the end of frames,
the approach also uses theMarker bit in the RTP header. This
bit is set only for the last packet of each frame and is used to
detect the end of frames.

Using this approach,we can identify the sequenceof frames
in the prediction window𝑊 , along with frame completion
time and frame size. We then use similar method as described
in Section 3.2.1 to estimate frame rate, frame jitter and bitrate.
RTPML: This is similar to the IP/UDPML approach and uses
machine learning-based methods to estimate QoE metrics.
The input features, however, are derived from RTP headers.
We consider the following set of RTP-based features:
• RTP timestamps:Wecalculate the number of unique RTP
timestamps over each stream individually as well as their
intersection and union.
• Markerbit sum: It is the sumofmarkerbit forall packets in

the predictionwindow.We calculate this feature separately
for video and retransmission streams.
• Number of out-of-order video sequence numbers:We

calculate the total numberof discontinuities in videopacket
RTP sequence numbers over the prediction window. It is
used as a signal for packet re-ordering and loss.
• RTP Lag: It captures the delays in frame transmission. We

assume that the first frame had zero delay. For each frame
𝑖 , we calculate the transmission delay as the difference
between its reception time 𝑡𝑖 and transmission time, which
is calculated as 𝑡0 + 𝑅𝑇𝑃𝑖−𝑅𝑇𝑃0

𝑆𝐹
. Here, 𝑆𝐹 is the sampling

frequency for generating RTP timestamps and is typically
90,000 for most video codecs [25]. We then calculate the
five statistics across frame transmission delays.
In addition, we also use the flow-level statistics as summa-

rized in Table 1. This is done for similar reasons as described
for the IP/UDPML approach.
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Category Features
Flow-level statstics Bytes per second, packets per second, packet size (5) and inter-arrival statistics (5)
IP/UDP features based on VCA semantics # unique packet sizes, # microbursts
RTP Headers # unique RTP timestamps (4), marker bit sum (1), out-of-order sequence (1), RTP lag (5)

Table 1: Summary of features extracted from traffic.Numbers in parenthesisparantheses reflect the count of features.
The IP/UDPML approach uses the first two categories of features, while the RTPML approach uses the first and
third category of features.

4 EXPERIMENT SETUPANDDATASETS
This section describes our experimentation framework and
the different datasets we use to evaluate our methodology.
We consider WebRTC-based VCAs for evaluation as We-

bRTC is a popular framework used by most VCAs for
their browser version. Moreover, it is possible to obtain
ground truth QoE metrics for WebRTC-based VCAs using
the webrtc-internalsAPI provided by Google Chrome [3].
To collect data for evaluation,we build an automated browser-
based framework that initiates calls for a given VCA over a
browser. The framework uses PyAutoGUI, a UI automation
framework, for starting and ending the calls. We collect data
three popular VCAs, namely Meet, Teams, andWebex. The
framework, however, is extensible to other VCAs.

We conduct 2-person calls each lasting for a variable dura-
tion. For consistency, we use a virtual web camera at one of
the endpoints streaming a predefined short video on loop and
log the QoEmetrics on the other endpoint. At the end of the
call, we collect both network traces andWebRTC logs.

4.1 Matching ground truth with estimates.
We compare our QoE estimates with per-second metrics re-
ported by webrtc-internals. We match the two datasets
using the timestamp fields in the two datasets. The webrtc-
internals reports only the start andend timesof data collection.
We assume that the reported per-secondmetrics are collected
at one-second interval; this matching approach may not be
perfect in certain cases, such as whenWebRTC logs contain
time intervals that are slightly out of phase. To address this as
much as possible, during our analysis, we filter out logswhere
we observe fewer per-second logs compared to the duration
of the call.

4.2 Network Condtions
To evaluate under diverse network conditions, we collect
two kinds of data: (1). in-lab data under emulated network
conditions, and (2). data from 15 households under real-world
network conditions.
In-labData Thedata is collectedbyconducting calls between
two machines in the lab under emulated network conditions.
We emulate dynamic network conditions using the tcp-info

stats dataset from the Measurement Lab’s Network Diagnos-
ticTest (NDT), a public dataset containing speed tests takenby
realusersacross theworld [2].The testmeasuresTCPthrough-
put by flooding the link for ten seconds. We use the samples
of instantaneous throughput and RTT, called tcp-info stats,
collected multiple times during the test [1]. More specifically,
we emulate the same sequence of RTT and packet loss values
as observed in a single test, while the throughput values are
sampled from a normal distribution with the same mean and
variance as the test throughput. We did not use the through-
put samples directly as they include throughput observed
during the TCP slow-start period. Each throughput, delay,
and loss value is emulated for a period of 1 second. We only
use traces with average speeds below 10Mbps to create chal-
lenging network conditions. We collect around 11k seconds,
15k seconds, and 13k seconds of Meet, Teams, and Webex
data, respectively. As expected, we find differences in ground
truth QoE metrics across the VCAs despite the presence of
similar network conditions. For instance, themedian bitrate is
500 kbps forWebex,whereas it is 1700 kbps for Teams (see Fig-
ure A.1 in Appendix for other metrics). These differences can
be attributed to design variations within the VCAs. Conduct-
ing evaluation across multiple VCAs can help us understand
the generalizability of our methodology.
Real-worldData.We note that the in-lab data is not a perfect
emulation of the real-world networks; therefore, we comple-
ment our data with real-world VCA data. For this purpose, we
deploy Raspberry Pi (RPi) devices in 15 households, directly
connected to the home router. These households are recruited
with the help from community organizations and are located
in a major city, spanning different neighborhoods, ISPs, and
speed tiers [29, 39]. Although our sample size is limited, it
serves as an additional independent data source, capturing
real-worldnetwork conditions,which allowsus to thoroughly
test our methods.

The RPi collects VCA data by initiating a 15-25s call every
30minutes to an endpoint located inside a cloudnetwork. The
VCA is selected randomly from the three VCAs. The cloud
endpoint and the RPi both join the VCA call as two different
participants. During the call, the video on the RPi is kept off
while the cloud-network endpoint streams a predefined video
over a virtual camera interface, same as in the lab experiments.



WebRTC Video QoE Estimation IMC ’23, October 24–26, 2023, Montreal, QC, Canada

We do not stream video on the RPi as it increases the CPU
utilization, leading to degradation in call quality due to non-
network reasons. For each call, we log the ground truth QoE
metrics and the network traffic on the RPi and export the data
to a centralized server at the end of the call.
The data collection spanned over a period of two weeks

and includes 320 Meet calls, 178 Teams calls, and 417Webex
calls. Compared to the in-lab data, the average QoEmetrics
exhibit higher values (see Figure A.2 in Appendix for the
distribution). This improvement is expected as the download
speeds of access networks, likely to be the bottleneck in this
case, have significantly improved. We also, however, observe
a small fraction of calls with lowQoE, indicating the presence
of variability in the real-world network conditions.

4.3 Parameter Setting andModel Training
The IP/UDP Heuristic uses two parameters, Δ𝑚𝑎𝑥

𝑠𝑖𝑧𝑒 and 𝑁𝑚𝑎𝑥 ,
that are VCA-specific. We set these parameters by sampling a
few sessions for each VCA.We use a value of 2 bytes for Δ𝑚𝑎𝑥

𝑠𝑖𝑧𝑒

across all VCAs. The value of 𝑁𝑚𝑎𝑥 is set to 3, 2, and 1 for
Meet, Teams, andWebex, respectively. For the MLmethods,
we use random forests as it was the most accurate among the
classical supervised machine learning models. The accuracy
numbers for these methods are reported over a 5-fold cross
validation.

For the MLmethodology, we experiment with several clas-
sical supervised MLmodels, specifically Support Vector Ma-
chines (SVMs), decision trees, and random forests. However,
in this paper, we present the results obtained using only ran-
dom forests, as they consistently yield the highest accuracy.
This finding aligns with prior research within the field that
has leveragedML-based techniques for network data analy-
sis [9, 14, 15, 31]. In addition, the accuracy numbers for ML-
based techniques are reported after 5-fold cross-validation.

5 EVALUATION

Actual Predicted TotalNon-Video Video
Non-video 98.3% 1.7% 67,830
Video 0% 100% 360,481

Table 2: Media classification accuracy forMeet

Our evaluation analyzes the accuracy of IP/UDPmethods,
particularly in comparison to the RTP baselines, using both
in-lab and real-world datasets. Furthermore, we examine the
potential sources of errors as well as identify the most impor-
tant features for MLmethods. Later, we analyze the transfer-
ability of ML models, characterize the network conditions
where the models err, and quantify the impact of prediction
window onmodel accuracy.

5.1 In-lab Data Results
We describe the accuracy of our methods in classifying media
and estimating each QoEmetrics for in-lab data.

5.1.1 Media Classification Accuracy. The identification of
video packets is a common step for both the IP/UDPmethods.
The ground truth is obtained by inspecting the Payload Type
RTP Header. Table 2 shows the normalized confusion ma-
trix for video packet identification for Meet. The accuracy of
identifying video packets is generally high. However, a small
fraction of non-video packets get misclassified as video. Upon
closer inspection, we find that these misclassified packets are
server hello messages over DTLSv1.2 and key exchanges in
the beginning of the call.
Impact of misclassification on QoE estimation. For
IP/UDP Heuristic, these additional packets can result in false
frame boundaries, leading to overestimation of number of
frames. On the other hand, the IP/UDPMLmethod may be
more resilient to minor errors in video traffic classification as
it relies on multiple signals in the network traffic.
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Figure 3: Frame rate errors. The whiskers represent the 10𝑡ℎ

and 90𝑡ℎ percentile values. The numbers represent theMAE.

5.1.2 Frame Rate. Figure 3 shows the distribution of error
in frame rate along with the Mean Absolute Error (MAE)
values across VCAs. We observe a consistent trend in MAE
values across all VCAs: RTPML< IP/UDPML<RTPHeuristic
< IP/UDP Heuristic. However, we observe a deviation from
this trend in Webex where MAE of RTP Heuristic is lower
than that of both RTP ML and IP/UDP ML approaches and
in Meet where MAE of IP/UDP Heuristic is lower than that
of RTP Heuristic. Moreover, the MAE remains within 2 FPS
margin in all cases, except for IP/UDP Heuristic over Teams.

In general, both heuristics tend to have higher errors com-
pared to theML-based methods. One potential reason for this
could be that theWebRTC frame rate is reported after account-
ing for additional application-level delays such as jitter buffer
delay which are not observable directly from the network
traffic. TheML-based methods trained on application-level
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ground truth can potentially calibrate their prediction to ac-
count for such mismatch while this is simply not possible for
the two heuristics.
Interestingly, the errors for the IP/UDPMLmethod have

similar distribution as RTP ML. This indicates that IP/UDP
headers can estimate frame rate with comparable accuracy to
RTP headers. In contrast, the IP/UDPHeuristic has the highest
errors. This is surprising as we expect IP/UDP Heuristic to
have similar accuracy as the RTP Heuristic. We now examine
the causes of error for the IP/UDP Heuristic approach.
Why does the IP/UDPHeuristic exhibit higher errors?
The IP/UDP Heuristic relies on the observation that inter-
frame packet size difference is larger than intra-frame packet-
size difference. However, this is not true for few cases:
Case 1. If two consecutive frames are similar in size, it will
end up combining those two frames or frame coalesces.
Case 2. If the packets within a frame have size difference
greater than Δ𝑚𝑎𝑥

𝑠𝑖𝑧𝑒 , they will be split into multiple frames.
We observe this mostly for Meet where a fraction of frames
contain packets with large intra-frame packet-size difference.
Case 3. If packets arrive out-of-order, the frames will get
interleaved. As a result, the heuristic will end up creating
false frame boundaries and overestimate the frame rate.

We analyze the frequency of each type of error in our data
as shown in Figure 4. For Meet, we observe a greater number
of splits for about 0.72 frames in one predictionwindow on an
average, leading to overestimation (see Figure 3). We detect
these splits by calculating the number of frames where the
intra-frame packet size is greater than Δ𝑚𝑎𝑥

𝑠𝑖𝑧𝑒 . In Figure 4, we
also see that a higher percentage of erroneous coalesces leads
to underestimation of FPS in Webex. We calculate these by
estimating the number of frames to which more than one
RTP timestamps were assigned by IP/UDP Heuristic in the
prediction window.

Meet Teams Webex
VCA

0.00

0.25

0.50

0.75

1.00

Av
g 

[#
 F

ra
m

es
]

Splits Interleaves Coalesces

Figure4:Different typesof errors in the inter- and intra-frame
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Feature importance for IP/UDP ML method. Figure 5
shows the top-5 features for framerateprediction in thecaseof
Teams.We observe a high feature importance for the # unique
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Figure 5: Top-5 feature importance scores for IP/UDP ML
frame rate predictions for Teams
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Figure 6: Distribution of errors across theVCAs. Thewhiskers
represent 10𝑡ℎ and 90𝑡ℎ percentile values. The numbers repre-
sent theMRAE for bitrate andMAE for frame jitter.

sizes feature. We also observe a significant importance of this
feature forMeet andWebex (see Figure A.4 in Appendix). The
prevalence of # unique sizes among the top-5 features of all
VCAs suggests a strong correlation between frame rate and
unique packet sizes, enabling accurate frame prediction even
without utilizing the RTP headers.

Notably, the other semantic-based feature, # microbursts,
does not appear among the top-5 features. This suggests that
there is significant distortion of inter-packet times along the
network path. Furthermore, anML approach, like IP/UDPML,
can take advantage of other signals in the network, which is
absent in the IP/UDP Heuristic. For example, the most impor-
tant feature is IAT [min] for Meet and # bytes forWebex.
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Figure 7: Top-5 features along with feature importance scores
for bitrate estimationusing the IP/UDPMLmethod forWebex

5.1.3 Bitrate. We calculate the relative bitrate error, de-
fined as the ratio of bitrate error and the ground truth bitrate.
Using relative values facilitate comparison of errors across
VCAs, especially because the ground truth bitrate distribu-
tions differ significantly across VCAs. Figure 6a shows the
box plot of relative bitrate error distribution across the VCAs.
The numbers displayed on the whiskers represent the mean
relative absolute error (MRAE). The error distribution and the
MRAE values exhibit similar values for both IP/UDPML and
RTPMLmethods across all three VCAs. For example, in the
case of Meet, the IP/UDP ML predictions are within 25% of
ground truth bitrate in 87% of cases, while in Teams, it is 89%
and inWebex, it is 95%. Comparatively, in RTPMLmethod,
these percentages are 89%, 91%, and 95% for Meet, Teams, and
Webex, respectively.

We observe higher errors for both heuristics in comparison
to the ML methods, except in the case of Teams. Moreover,
the errors are systemic with median relative bitrate error
consistently exceeding zero across all VCAs for both heuris-
tics. This is because neither of these heuristics considers any
application-layer overheads, such as due to encoding meta-
data. It should be noted that we do take into account the
overhead due to fixed portion of the RTP headers, i.e., 12
bytes. However, incorporating encoding overheads remains
challenging even with RTP headers, as these parts of the traf-
fic are encrypted. The ML methods, on the other hand, can
address these systemic errors by training on video bitrate
values observed at the application level.
Feature importance for IP/UDP ML method. Figure 7
shows the top-5 important features for the IP/UDPMLmethod
in the case ofWebex. As expected, the feature # bytes has the
highest importance. In fact, that is the case across all three
VCAs. Most of the other important features also relate to data
volumes, such as Size [mean] and # packets. Interestingly, we
do not observe any semantics-based features among the top-5
features, except for # unique sizes, which appears as the fourth
most important feature forWebex. This is because video bi-
trate is inherently correlated with observed throughput. In
fact, the top-5 features for the RTPMLmethod are also found
to be derived fromflow statistics (see FigureA.7 inAppendix).
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Figure 8: A time series for frame jitter IP/UDPML predictions
over a singleMeet trace

5.1.4 Frame Jitter. Figure 6b shows the boxplot of the er-
rors in frame jitter predictions for the threeVCAs. It is evident
that allmethods, including the RTP-based approaches, tend to
overestimate frame jitter in most cases. Furthermore, we find
that theMAEvalues are unusually high for thismetric. The av-
erage ground truth frame jitter observed across all threeVCAs
falls within the range of 27-33 ms, which is comparable to the
MAE values obtained from all methods. Upon further exami-
nation, we discover that theWebRTC ground-truth statistic
reports the jitter over decoded frames, encompassing addi-
tional application delays such as jitter buffer and decoding
delays. The jitter buffer introduces variable delay to ensure
smooth video playback,while decoding delays can vary based
on the client’s computational resources. Capturing these vari-
able application-level delays can be challenging using only
the network data.
Figure 8 illustrates this phenomenon with the frame jitter

values reported by the IP/UDPML andWebRTC for an exam-
ple Meet call. The IP/UDPMLmethod reports several spikes
in frame jitter throughout the call. While most of the smaller
spikes seem to be smoothed out in theWebRTC data, there
is a significant spike around t=10s that appears in both cases.
Additionally, the IP/UDPMLmethod estimates the spike prior
to t=10s, indicating jitter in frame arrival around that time.
The application jitter buffermight have attempted tomitigate
this frame jitter by emitting frames at constant rate until it is
emptied, resulting in a larger spike later.
From the perspective of a network operator, it is more

important to predict and respond tonetwork-level frame jitter.
Ensuringa smooth framearrivalwill automatically lead to low
frame jitter. In futurework, we plan tomodify our experiment
methods to collect ground truth frame jitter calculated before
the frame is enqueued to the jitter buffer. This will allow us to
more accurately assess the error of our method by providing
a reliable basis for comparison.

5.1.5 Resolution. We use frame height as the measure for
resolution. Within our dataset, we observe 3 distinct frame
height values forMeet: 180, 270, and 360; 11 distinct values for
Teams ranging from 90 to 720; and only 2 distinct values for
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Figure 9: Top-5 feature importance scores for IP/UDPML res-
olution predictions forWebex

Method Accuracy
Meet Teams Webex

IP/UDPML 97.74% 87.22% 99.30%
RTPML 97.87% 87.78% 99.31%

Table 3: Resolution estimation accuracy across VCAs

Actual Predicted TotalLow Medium High
Low 96.41% 1.65% 1.95% 5038

Medium 8.08% 45.40% 46.52% 1782
High 1.20% 7.85% 90.95% 7588

Table4:Thenormalizedconfusionmatrixforresolution
predictions by IP/UDPMLmodel for Teams.

Webex: 180 and 360. For Meet andWebex, we apply classifica-
tion on per-value basis. For Teams, we bin the frame height
into three classes: low (≤ 240),medium ((240, 480]), and high
(> 480). Table 3 shows the overall resolution accuracies across
all VCAs. In all cases, the accuracy is comparable to that of
RTPMLmethod.
Table 4 shows the confusion matrix for Teams using the

IP/UDPMLmethod. It is evident that the IP/UDPMLmethod
accurately predicts the low and high resolution classes. How-
ever, it misclassifies 46.52% ofmedium resolution intervals as
high resolution. This discrepancy could be attributed to either
class imbalance in one or more of the 5-fold cross validation
splits or the inherent difficulty in distinguishing between the
medium and high resolution classes. It should be noted that
within themedium resolution bin, 70% of the intervals have
a frame height of 404, which is close to the threshold of 480
used to differentiatemedium and high resolution classes.
Feature importance. For IP/UDPMLmethod, packet size
statistics consistently appear in the top-5 features for allVCAs.
In fact, for Meet and Teams, 3 out of top-5 features are related
to packet sizes, suggesting strong correlation between frame
resolution and packet sizes. ForWebex (see Figure 9), themost
important feature is # unique sizes, indicating a correlation
between frame rate and frame resolution.We find similar pat-
terns in feature importance plots for the RTPMLmethod (see
Figure A.9 in Appendix). The only exception isWebex, where

the # unique sizes feature is replaced by𝑢𝑛𝑖𝑞𝑢𝑒𝑅𝑇𝑃𝑣𝑖𝑑𝑇𝑆 and
𝑀𝑎𝑟𝑘𝑒𝑟𝑣𝑖𝑑 bit sum features. Thisfinding re-affirms that packet
size difference is valuable for identifying frame boundaries.

5.2 Real-world data
This section describes the results over the data collected
from 15 access networks. We do observe some differences
between the real-world dataset. Teams andWebex use a dif-
ferent payload type compared to the in-lab data. For Teams,
we observe a payload type of 100 for video, 101 for video
retransmission, while forWebex, the payload type for video
is 100, with no retransmissions as in the lab data. We adjust
the media classification approach for the RTP methods ac-
cordingly, while the remainingmethodology is same as in-lab.

5.2.1 Frame Rate. Figure 10a shows the boxplot of frame
rate estimation errors. The overall accuracy is high for the
IP/UDPMLmethod and is comparable to the RTPMLmethod,
a difference of 0.1 FPS across all VCAs. Interestingly, the RTP
Heuristic has the highest accuracy among all methods. We
believe it could be due to the fact that network conditions are
more stable in the real-world data, thus reducing any errors
in RTP Heuristic due to any application-level delays such as
jitter buffer delay.
The IP/UDP Heuristic, on the other hand, has the highest

errors amongallmethods.While, theMAEdifferencebetween
IP/UDPHeuristic andRTPHeuristic is only0.5 FPSand0.7 FPS
for Teams andWebex, it is 2.3 FPS for Meet. Upon further in-
spection, we find that the high errors for Meet are because
of higher fraction of frames in the real-world data where the
intra-framepacket size difference is greater than theΔ𝑚𝑎𝑥

𝑠𝑖𝑧𝑒 , the
threshold used to determine frame boundaries. More specifi-
cally, in the lab data, the intra-frame size difference exceeded
Δ𝑚𝑎𝑥
𝑠𝑖𝑧𝑒 for only 4.26% frames,while this number is 14.48% in the

real-world data. This also explains consistent overestimation
for Meet. Note that using a higher value for Δ𝑚𝑎𝑥

𝑠𝑖𝑧𝑒 will not
help as it will lead to underestimation due to combining of
frames with similar size. The discrepancy in Meet could be a
codec-specific issue, Meet uses VP8 or VP9 while both Teams
andWebex useH.264, leading to fragmentation of frames into
unequal-sized packets. We will examine this further in our
future work.
We also notice this anomaly in the feature importance

analysis for IP/UDP ML. While # unique sizes is among the
top-5 features for Teams andWebex, it is not the case forMeet.
Instead, this is replaced by the IAT statistics, indicating that
packet arrival patterns are better signals for detecting frame
boundaries. This finding confirms that # unique sizes is not as
strongly correlated with frame rate forMeet in the real-world
data. This also shows the resiliency of MLmodels as they can
rely on multiple features together more effectively.
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Figure 10: Distribution of errors across the VCAs for the real-world dataset. The whiskers represent the 10𝑡ℎ and 90𝑡ℎ percentile
values. The numbers above the top whisker represent theMAE values for frame rate and frame jitter andMRAE for bitrate.

5.2.2 Bitrate. Figure 10b shows the boxplot of relative
error distribution with overall MRAE values mentioned over
the top whisker. The MRAE values in the real-world data are
smaller compared to the in-lab data across all methods. For
example, IP/UDPMLmethod can estimate bitrate within 25%
of ground truth in 92.17% of the intervals for Meet, 82.43% for
Teams, and 95.14% forWebex. This is likely because the bitrate
values are more stable, making them easier to predict. The
feature importance trends for bitrate were found to be similar
as in-lab data for each VCA. The most important features for
both RTP ML and IP/UDP ML are again derived from flow
statistic and correspond to data volume such as # bytes and #
packets.

5.2.3 Frame Jitter. We observe that the overall frame jitter
errors are lower in the real-world data compared to the in-lab
data for most methods (see Figure 10c and Figure 6b). For
example, when analyzing IP/UDP MLMAE value for Meet,
the MAE is 9.3 ms in real-world data, whereas it is 22.6 ms
for in-lab data. This difference is likely because the network
conditions tend to be more stable in the real-world dataset.
This leads to lower network-level frame jitter, reducing the
smoothening effect of the application-level delay jitter buffer.
Thus, the differences between the predicted frame jitter (only
network-data) and theWebRTC frame jitter (includes effect
of application delay jitter buffer) will be smaller, leading to
reduced overall errors. The remaining trends are similar as
the in-lab data.

5.2.4 Resolution. Thereal-worlddataset forMeetcontains
two additional frame height values: 540 and 720. This is likely
because of greater throughput availability and explains the
greater overall bitrate values forMeet. ForTeams, the same set
of resolution values were observed as in-lab data. ForWebex,
we only observe a single resolution, and thus skip its accuracy
computation.

The accuracy for resolution classification using IP/UDPML
is 96.26% and 86.82% for Meet and Teams, respectively. This
is comparable to the RTPML accuracy – 96.75% for Meet and
87.11% for Teams, respectively. As in the lab data, in this case

Method VCA
Meet Teams Webex

IP/UDPML 12.41 2.07 1.56
RTPML 3.11 2.51 1.51

Table 5: Frame rateMAE results after using lab-trained
models to predict real-worldMAE

as well IP/UDPMLmodel can distinguish extreme resolution
values (see Table A.3 for Teams) with high accuracy, while
the accuracy is low formedium resolution intervals.

5.3 Model Transferability
We examine the transferability of MLmodels by testing the
in-lab trained ML models with the real-world data. Table 5
shows theoverallMAEvalues for framerateestimation.When
considering the IP/UDPMLapproach, there is a slight increase
in MAE for both Teams andWebex, specifically 0.7 FPS and
0.3 FPS, respectively, compared to using models trained on
real-world data. However, for Meet, the MAE significantly
increases by 10 FPS. Upon further inspection, we find that
IAT [min] is the most important feature for the in-lab-trained
IP/UDPMLmodel in this case. Considering the disparity in
bitrates between real-world and lab data for Meet, it is likely
that the IAT distribution differs as well, consequently leading
to errors in frame rate prediction. Interestingly, the decline
in performance for Meet using the RTP ML method is not
as pronounced as observed in the IP/UDPMLmethod. This
disparity can be attributed to the higher importance of the
number of unique RTP timestamps as a featurewhich in some
sense is a direct indicator of frame rate compared to IAT.

The trendpersists for videobitrate and resolutionwitha sig-
nificant drop in accuracy for Meet, but only a slight decrease
for Teams andWebex (see Tables A.4 and A.5 in Appendix).
The non-transferability for Meet can again be attributed to
the presence of a distinct distribution that was not previously
encountered, i.e, calls with high bitrate and high resolution.
This discrepancy suggests that the model lacks the ability to
effectively extrapolate to unseen distributions.
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Figure 11: IP/UDPMLMAE for frame rate with varying net-
work loss. The bands represent 95% confidence intervals

5.4 Effect of Network Conditions
We next characterize the network conditions under which
the models yield high errors. To do so, we collect data under
synthetic network conditions by varying one of the following
five network parameters: throughput (1500 kbps), throughput
jitter (0 kbps), latency (50ms), latency jitter (0ms), and packet
loss (0%). The numbers in parantheses represent the default
values. For example, to analyze the impact of loss, other pa-
rameters are set to default values and loss is varied from 0%
to 20% following a Bernoulli loss model. Each combination of
network conditions is repeated for four calls. For training ML
models, we use 50% of data, sampling uniformly randomly
from each combination of network condition. The remaining
50% data is used for testing.
Figure 11 shows the accuracy under varying loss for the

IP/UDPMLmethod. Barring few exceptions, we observe an
increasing trend in errors as network loss increases. On fur-
ther inspection, we found that losses lead to retransmissions
for video packets, leading to packet reordering. It is not possi-
ble to determine the correct order of the packets using only
IP/UDP headers which causes higher errors. We find that the
errors are even higher for the IP/UDP Heuristic as it relies
only on packet sizes, and is more severely impacted by packet
reordering. We also observe similar behavior under high la-
tency or throughput jitter likely because both also lead to
packet reordering. However, this occurs at very high values
of jitter, indicating some robustness to minor jitters in the
network. The errors do not change significantly with varying
mean throughput or mean latency.

5.5 Effect of PredictionWindow Size
We analyze the impact of prediction window size on QoE
estimation accuracy. Figure 12 shows the IP/UDPMLMAE
values for frame rate under varying prediction window. The
errors decrease as the prediction window size increases. This
can be attributed to two reasons: (1). larger window sizes
reduce the impact of sub-second-level windowmisalignment
between packet traces andWebRTC logs, and (2). the frame
rate values becomemore stable as they are smoothed out over
larger window, making the prediction task easier.We observe
similar patterns across other methods and metrics.
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Figure 12: Variation of IP/UDPMLMAEwith prediction win-
dow size for frame rate predictions for in-lab traces

6 RELATEDWORK
QoE Inference for Video Streaming. Past research has
made substantial progress in inferring QoE for on-demand
video streaming. One set of approaches propose heuristics
that model a video session relying on the properties of the
underlying streaming protocol [13, 30, 37]. The second set
of approaches propose using supervised machine learning
and use features derived from network data to estimate QoE
metrics [4, 8, 26, 33]. Inferring QoE for video conferencing
is a fairly distinct problem from video streaming due to the
differences in the nature of two applications, consequently
leading to differences in the underlying application and trans-
port protocols, and the metrics that determine user QoE. This
paper tackles the problem of QoE inference for VCAs and
proposes both heuristic- and ML-based approaches.
VCA measurement studies. Early VCA measurement

studies focused on understanding the design and network
performance of Skype, one of the first and the most popular
VCA of the time [6, 19, 21]. More recent studies have revisited
similar questions for modern VCAs [11, 20, 24, 28, 36]. Most
of these studies rely on controlled experiments and assume
access to end-hosts to collect VCA performance data. For in-
stance, He et al. [20] identify the functional differences (e.g.,
congestion control mechanisms) among modern VCAs us-
ing controlled measurements. Our work considers a different
question, i.e., how to infer video QoEmetrics without access
to end-hosts?Answering this question can enable networkop-
erators to understand VCA performance for a wide-variety of
application and network contexts and appropriately manage
their networks.

VCAQoE inference. Past work has proposed data-driven
techniques, based on supervised machine learning, to esti-
mate QoE for Voice over IP [4, 12]. More recent works propose
similar techniques but focus on video performance over VCAs.
These works differ, however, in the set of inferred QoEmet-
rics as well as the network features used for inference. For
instance, Garcia et al. infer metrics assuming access to an
unimpaired reference video[18]. Similarly, Yan et al.[44] use
WiFi-specific features to predict “good versus bad” QoE over
the entire VCA session. We focus on inferring no-reference,
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objective VCA QoE metrics using measurements of passive
network traffic. Works by Nikravesh et al.[35] and Carofigilo
et al. [9] are similar in spirit in that regard. However, both of
these works assume access to RTP headers which may not
be practical in many cases such as with custom RTP proto-
cols (e.g., Zoom), encrypted application-layer headers (e.g.,
VPN), or legacy monitoring systems. Recent work by Oliver
et al. [32] uses entropy-based header analysis to infer Zoom’s
RTP encapsulation mechanisms. However, the approach may
not work if VCAs use complex encapsulation mechanisms
or encrypt application-layer headers altogether. Morevoer,
it requires network monitoring systems that can process ar-
bitrary portions of the traffic. This may not be feasible for
several network operators due to practical considerations.
This paper considers whether more standard features of the
network traffic, i.e., IP/UDP headers, can be used to infer the
VCAQoEmetrics.

7 LIMITATIONS AND FUTUREWORK
Generalizability to other VCAs.Our paper’s evaluation is
focused onWebRTC-based VCAs, although our methodology
can be applied to any RTP-based VCA. The reason to focus
onWebRTC is the lack of methods to obtain application-level
QoEmetrics for native VCA clients. Additionally, we do not
include theWebRTC version of Zoom, one of the most popu-
lar VCAs, as its implementation uses the datachannel API
meant for non-audiovisual communication. As a result, the
video QoE metrics are no longer available for Zoom through
the webrtc-internalsAPI. Past work has considered other
metrics to obtain QoEmetrics from the applications. Michel
et al. [34] used a custom Zoom client, but this approach will
not work for the native client of other VCAs. Anothermethod
to obtain application-level logs is through screen capture of
annotated video [16, 43], but this method is resource inten-
sive. Future work will explore generalizable and lightweight
methods to obtain application-level QoE logs for native VCA
clients and assess the accuracy of proposed QoE estimation
methods for these clients.
Cost of ML models. Using supervised ML models can be
costly due to the expense of acquiring labeled data for training.
We present one solution to gather labeled data, i.e., through
automated data collection frameworks, deployed either in-lab
or across multiple network vantage points. The framework
is easily extensible to otherWebRTC-based VCAs. Another
solution to explore in future would be whether direct or cali-
brated estimations from non-machine learning methods like
IP/UDPHeuristic or RTPHeuristic can be used as alternatives
to labeled data.
Impactofapplicationmodes.Weonlyevaluateourmethod-
ology in a two-person call scenario. However, modern VCAs
offer various other applicationmodes, such as disabling video,

multi-party conferencing, and screen sharing. Determining
whether user video is disabled seems possible by analyzing
UDP packet size distribution, but the other twomodes pose
challenges in QoE estimation, especially using only IP/UDP
headers. Inmulti-party scenarios, multiple video streamsmay
be transmitted over the same UDP flow. This may require
an additional step in our methods to estimate the number of
participants before estimating QoE. Similarly, when screen
sharing is enabled, adjustments to the media classification
steps will be required. These adjustments may be based on
insights from differences in encoding of video and screen
sharing data. Additionally, a machine learning-based QoE
inference approach such as IP/UDPML, when trained with
appropriate data, could accurately estimate QoEmetrics even
across different application modes. Further research will ex-
plore this question and quantify the impact of application
modes on the accuracy of our methods.
System considerations. In theory, our approach relies on
lightweight features from the IP/UDP headers of network
traffic. However, we have not tested the scalability of our
methods on a network-wide level, particularly when it comes
to real-time QoE estimation. Additional optimization might
be required in the implementation of our methods such as
using efficient data structures or implementationof streaming
versions of the methods. In future work, we plan to imple-
ment these approaches within a real-world network, such as
campus network, to assess the scalability of our approach.

8 CONCLUSION
We have developed and evaluated two methods to infer QoE
forWebRTC-based VCAs at per-second granularity. Evalua-
tion of our method under diverse network conditions demon-
strates the model’s ability to estimate QoE metrics with high
accuracy, even if the methods relies on only IP/UDP headers.
This approach represents a significant advance over previous
work, which uses information in the RTP headers. Future
work will explore the generalizability of our methods to a
broader set of clients (e.g., device, operating systems, native
clients) and application modes (e.g., multi-party calls).
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Figure A.1: CDF of ground truth QoEmetrics for in-lab data
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Figure A.2: CDF of ground truth QoEmetrics for real-world
data

Actual Prediction TotalNon-Video Video
Non-video 98.5% 1.5% 378,249
Video 0% 100% 1,818,689

Table A.1: TeamsMedia classification accuracy for in-
lab data

Actual Prediction TotalNon-Video Video
Non-video 98.2% 1.8% 50,799
Video 0% 100% 946,769

Table A.2:WebexMedia classification accuracy for in-
lab data

1 2 2 2 3 3 4 4 4 5 5 6 6

1 2 3 4

Packet RTP Timestamps

Assigned frames

Figure A.3: A plot showing frame assignments by the IP/UDP
Heuristic approach over a 1-second window for Meet. The
solid arrows represent correct frame assignments while the
dotted arrows represent incorrect ones.

A STATEMENTOF ETHICS
The real-world network traces used in this paper are collected
after obtaining approvals fromour Institutional ReviewBoard
(IRB). We prioritize the protection of user privacy and take
extensive measures to ensure it. Our deployment setup solely
permits the collection of active measurement data from par-
ticipants’ homes;we cannotmonitor anyuser network traffic.
More specifically, the Raspberry Pi (RPi) devices used for this
study are connected to the home router using awired connec-
tion like any other device. We do not sit in the middle of the
user device and the home router. Additionally, we remove any
personally identifiable information, such as physical address
and demographics, before analyzing the collected data.
The network trace data that we make public corresponds

to the VCA calls between the Raspberry Pi and the cloud end-
point. As an additional privacy measure, the IP addresses of
both these endpoints have been hashed in the network traces
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Actual Predicted TotalLow Medium High
Low 90.23% 5.58% 4.19% 573

Medium 14.32% 30.87% 54.81% 447
High 0.89% 3.34% 95.77% 2576

Table A.3: The normalized confusionmatrix for reso-
lution predictions by IP/UDPMLmodel for Teams on
real-world data. The percentages indicate the accuracy
of our predictions for each frame height.

Method VCA
Meet Teams Webex

IP/UDPML 889.93 114.06 29.53
RTPML 793.86 167.18 29.22

Table A.4: BitrateMAE results after using lab-trained
models to predict real-worldMAE

Method VCA
Meet Teams Webex

IP/UDPML 89.74 64.36 29.78
RTPML 30.31 19.87 95.43

Table A.5: Frame Jitter MAE results after using lab-
trainedmodels to predict real-worldMAE

as well as the JSON files obtained via webrtc-internals.
The remaining datasets used in this paper are collectedwithin
controlled lab setting and do not pose any privacy-related
issues.

B METHODOLOGY

Algorithm 1An algorithm for VCA frame boundary estima-
tion using IP/UDP headers only
Input: 𝑝𝑎𝑐𝑘𝑒𝑡𝑠, Δ𝑚𝑎𝑥

𝑠𝑖𝑧𝑒 , 𝑁
𝑚𝑎𝑥

Output: 𝑓 𝑟𝑎𝑚𝑒𝑠

𝑓 ← 0
𝑓 𝑟𝑎𝑚𝑒𝑠 ← {}
for 𝑝 in 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 do

𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒

for 𝑝′ in previously seen 𝑁𝑚𝑎𝑥 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 do
if |𝑝′ .𝑠𝑖𝑧𝑒 - 𝑝.𝑠𝑖𝑧𝑒 | ≤ Δ𝑚𝑎𝑥

𝑠𝑖𝑧𝑒 then
𝑓 𝑟𝑎𝑚𝑒𝑠 [𝑝] ← 𝑓 𝑟𝑎𝑚𝑒𝑠 [𝑝′]
𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 ← 𝑇𝑟𝑢𝑒

break
end if
if 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 = 𝑇𝑟𝑢𝑒 then

𝑓 ← 𝑓 + 1
𝑓 𝑟𝑎𝑚𝑒𝑠 [𝑝] ← 𝑓

end if
end for

end for

C DATASETS
C.1 Data Description
Figure A.1 and Figure A.2 show the CDF of ground truth QoE
metrics for in-lab and real-world datasets respectively.

D EVALUATION
D.1 In-lab Data
D.1.1 Media classification accuracy. Table A.1 and A.2

show the media classification accuracy of Teams andWebex,
respectively, using only IP/UDP headers.

D.1.2 Frame rate. Figure A.3 illustrates a case of frame
coalescing fromone of theTeams sessions. The red dots repre-
sent sequence of packets over time with their respective RTP
timestamp, while the blue dots show the frame assignment
by the IP/UDPHeuristic. Packets with RTP timestamp 2 and 3
have a size of 1022 bytes and 1020 bytes, respectively, leading
to these packets grouped into a single frame. Similar is the
case for packets with RTP timestamp 5 and 6.
Feature Importance. Figure A.4 and A.5 show the feature
importance plots for IP/UDP ML and RTP ML methods, re-
spectively.

D.1.3 Video bitrate. Feature Importance. Figure A.6
and A.7 show the feature importance plots for IP/UDP ML
and RTPMLmethods, respectively.

D.1.4 Frame Resolution. Feature Importance. Fig-
ure A.8 andA.9 show the feature importance plots for IP/UDP
ML and RTPMLmethods, respectively.

D.2 Real-world Data
D.2.1 Resolution. Table A.3 shows the IP/UDPML confu-

sion matrix for resolution prediction for Teams on real-world
data.

D.3 Model Transferability
Table A.4 and A.5 show the MAE of models trained using
in-lab data and tested on real-world data for video bitrate and
frame jitter, respectively.

D.4 Effect of Network Conditions
Table A.6 summarizes the synthetic network conditions emu-
lated to study the effect of network conditions on the accuracy
of MLmodels.
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Figure A.4: Top-5 features along with importance scores for frame rate estimation across the three VCAs for the IP/UDPML
method

0 20 40 60 80 100
Feature Importance [%]

RTP lag [stdev]
IAT [max]

Markervid bit sum
IAT [mean]

# unique RTPvid TS

Fe
at

ur
e

(a) Meet

0 20 40 60 80 100
Feature Importance [%]

RTP lag max
IAT [mean]

RTP lag [stdev]
Markervid bit sum

# unique RTPvid TS

Fe
at

ur
e

(b) Teams

0 20 40 60 80 100
Feature Importance [%]

RTP lag max
# packets

RTP lag [stdev]
# bytes

Markervid bit sum

Fe
at

ur
e

(c)Webex

Figure A.5: Top-5 features along with importance scores for frame rate estimation across the three VCAs for the RTPMLmethod
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Figure A.6: Top-5 features along with feature importance scores for bitrate estimation using the IP/UDPMLmethod.
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Figure A.7: Top-5 features along with feature importance scores for bitrate estimation using the RTPMLmethod.
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Figure A.8: Top-5 features along with feature importance scores for resolution estimation using the IP/UDPMLmethod.
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Figure A.9: Top-5 features along with feature importance scores for resolution estimation using the RTPMLmethod.

Impairment Throughput [kbps] Delay [ms] Packet Loss
Mean Throughput ` : [100, 200, 500,1000, 2000, 4000], 𝜎 : 0 `: 50, 𝜎 : 0 0%
Throughput stdev. `: 1500, 𝜎 : [0, 100, 200, 500, 1000, 1500] `: 50, 𝜎 : 0 0%
Mean Latency `: 1500, 𝜎 : 0 `: [50, 100, 200, 300, 400, 500], 𝜎 : 0 0%
Latency stdev. `: 1500, 𝜎 : 0 `: 50, 𝜎 : [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] 0%
Packet Loss % `: 1500, 𝜎 : 0 `: 50, 𝜎 : 0 [1, 2, 5, 10, 15, 20]%

Table A.6: Different impairment profiles used for network sensitivity tests. Square brackets indicate a variation
across different calls. ` and 𝜎 denotemean and standard deviation respectively.

D.5 Effect of IP/UDPHeuristic packet
lookback
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FigureA.10:Variationof framerateMAEwith IP/UDPHeuris-
tic packet lookback parameter

The IP/UDP Heuristic packet lookback parameter was tuned
on a sample of 50 in-lab traces each for Meet, Teams andWe-
bex. Figure A.10 shows the variation of frame rate MAEwith

the number of packets we look back to match a packet with
already assembled frames. ForWebex we see a clear increas-
ing trend, while for Meet and Teams we observe minima at
lookbacks of 3 and 2 respectively.Webex has an optimal look-
back of 1 because 99.70% frames have amaximum intra-frame
size difference of 2 bytes, and 99.38% of the frames are of size
less than or equal to 3 packets. Our algorithm is thus able to
merge similarly sized frames together by not looking too far
back. For Teams, even though 98.56% of the frames have an
intra-frame size difference of 2 bytes, only 43.82% have a size
less than or equal to 3 packets. Thus, a greater lookback is
required to merge similarly sized packets together. For Meet,
these percentages are slightly lower thanWebex (95.73% and
95.18%), thus the optimal lookback is 2 packets.
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